Neil3 and NEIL1 DNA glycosylases remove oxidative damages from quadruplex DNA and exhibit preferences for lesions in the telomeric sequence context.

نویسندگان

  • Jia Zhou
  • Minmin Liu
  • Aaron M Fleming
  • Cynthia J Burrows
  • Susan S Wallace
چکیده

The telomeric DNA of vertebrates consists of d(TTAGGG)n tandem repeats, which can form quadruplex DNA structures in vitro and likely in vivo. Despite the fact that the G-rich telomeric DNA is susceptible to oxidation, few biochemical studies of base excision repair in telomeric DNA and quadruplex structures have been done. Here, we show that telomeric DNA containing thymine glycol (Tg), 8-oxo-7,8-dihydroguanine (8-oxoG), guanidinohydantoin (Gh), or spiroiminodihydantoin (Sp) can form quadruplex DNA structures in vitro. We have tested the base excision activities of five mammalian DNA glycosylases (NEIL1, NEIL2, mNeil3, NTH1, and OGG1) on these lesion-containing quadruplex substrates and found that only mNeil3 had excision activity on Tg in quadruplex DNA and that the glycosylase exhibited a strong preference for Tg in the telomeric sequence context. Although Sp and Gh in quadruplex DNA were good substrates for mNeil3 and NEIL1, none of the glycosylases had activity on quadruplex DNA containing 8-oxoG. In addition, NEIL1 but not mNeil3 showed enhanced glycosylase activity on Gh in the telomeric sequence context. These data suggest that one role for Neil3 and NEIL1 is to repair DNA base damages in telomeres in vivo and that Neil3 and Neil1 may function in quadruplex-mediated cellular events, such as gene regulation via removal of damaged bases from quadruplex DNA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The NEIL glycosylases remove oxidized guanine lesions from telomeric and promoter quadruplex DNA structures

G-quadruplex is a four-stranded G-rich DNA structure that is highly susceptible to oxidation. Despite the important roles that G-quadruplexes play in telomere biology and gene transcription, neither the impact of guanine lesions on the stability of quadruplexes nor their repair are well understood. Here, we show that the oxidized guanine lesions 8-oxo-7,8-dihydroguanine (8-oxoG), guanidinohydan...

متن کامل

The mouse ortholog of NEIL3 is a functional DNA glycosylase in vitro and in vivo.

To protect cells from oxidative DNA damage and mutagenesis, organisms possess multiple glycosylases to recognize the damaged bases and to initiate the Base Excision Repair pathway. Three DNA glycosylases have been identified in mammals that are homologous to the Escherichia coli Fpg and Nei proteins, Neil1, Neil2, and Neil3. Neil1 and Neil2 in human and mouse have been well characterized while ...

متن کامل

Abnormal Expressions of DNA Glycosylase Genes NEIL1, NEIL2, and NEIL3 Are Associated with Somatic Mutation Loads in Human Cancer

The effects of abnormalities in the DNA glycosylases NEIL1, NEIL2, and NEIL3 on human cancer have not been fully elucidated. In this paper, we found that the median somatic total mutation loads and the median somatic single nucleotide mutation loads exhibited significant inverse correlations with the median NEIL1 and NEIL2 expression levels and a significant positive correlation with the median...

متن کامل

A Role for the Fifth G-Track in G-Quadruplex Forming Oncogene Promoter Sequences during Oxidative Stress: Do These “Spare Tires” Have an Evolved Function?

Uncontrolled inflammation or oxidative stress generates electron-deficient species that oxidize the genome increasing its instability in cancer. The G-quadruplex (G4) sequences regulating the c-MYC, KRAS, VEGF, BCL-2, HIF-1α, and RET oncogenes, as examples, are targets for oxidation at loop and 5'-core guanines (G) as showcased in this study by CO3•- oxidation of the VEGF G4. Products observed ...

متن کامل

Coordination of DNA repair by NEIL1 and PARP-1: a possible link to aging

Oxidative DNA damage accumulates with age and is repaired primarily via the base excision repair (BER) pathway. This process is initiated by DNA glycosylases, which remove damaged bases in a substrate-specific manner. The DNA glycosylases human 8-oxoguanine-DNA glycosylase (OGG1) and NEIL1, a mammalian homolog ofEscherichia coli endonuclease VIII, have overlapping yet distinct substrate specifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 288 38  شماره 

صفحات  -

تاریخ انتشار 2013